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Abstract

According to the accepted opinion a three-layeredral network with feedforward structure
is considered as universal approximator for anytowous function. However this is rather
conventional representation since trained on firsige of points the given neural network will
be more likely interpolator of continuous functidghan its approximator. Therefore, that
retrain the neural network up to universal approaior so that approximation Vejershtrass’s
theorem is full carried out it is offered the comdul training of neural network by Remez’s
algorithm with “error backpropagation” and to consict the neural approximation kernel.

Key words: continuous function, Vejershtrass’s theorem, feedard three-layered neural
network, neural approximation kernel, Remez’s atyan, error backpropagation algorithm.

1. Introduction

Since 1986 year, after "error backpropagation" mtigm has been offered by
Rummelhart, various non-recurrent neural-set cangtms began to be applied widely in the
decision of many applied problems such as mode#imdjidentification of systems, generation
and decomposition of signals, recognition and diaasion of patterns, etc. Based on the
differential nature of neural networks this algomt has allowed to reveal approximate
properties of the networks using nonlinear actoratfunctions into neurons from hidden
layers. It has been established [1] that feedfaiwagural networks even with one hidden
nonlinear layer are capable to be a universal aqupittor for any continuous function on the
set consisting of finite number of points. Moreguartown theorems of Chebishev and Valle-

Pussen [2] have shown that the problem of appraximaf continuous functionf (x) on the
closed limited sefQ is equivalent to a problem of approximation of #@me function on a

subsetQ, [1 Q consisting of finite number of points.

The problem of approximation of the continuous fiores by neural networks was

considered by many authors. In particular, it eotfetically established that the neural network
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with one nonlinear hidden layer can approximate aogtinuous function with necessary
accuracy [3]. Thus the estimation order of the apipnation inversely depends on number of
neurons used into the hidden layer. In practiceohbtain the required estimation of
approximation it is necessary to involve signifitamount nonlinear neurons into the hidden
layer of neural network, and it, as a rule, leamsntrease in time spent for neural network
training. It does using of neural networks lessedif/e, especially in the solving of
management problems, where often it is necessarynaie operatively the "correct-
reasonable” decision in response to possible edtemd internal factors of influence. In the
given article the approach to training the neustivorks approximating continuous functions
is considered somewhat different from traditioffdle essence of this approach consists in the

following.

For approximation any continuous functidr(x dgfined on a segmeipa,b ipstead

of traditional neural network

Yoer = 20 [P(&; (x—6) (1)
i=0
with any parametersy,¢;,6 and limited sigmoid activation functiog, (x) = ¢(Ei D(—Bi) of
i -th neuron from the hidden layer, it is selectewtwvork of the similar structure
Voer = 2,0 (& - 6), )
i=0

where parameterg ,8 are in advance optimized according to inequality

i¢(a*&—a*)—1‘<el,el>o ©

by co-application of error backpropagation and R&maelgorithm for any training set

{xj J}T:) The neural network inducing the polynomiat,(x) = > #(& X-§) and creating

i=0
thus “favourable conditions” for approximation afyacontinuous function we shall name as

neural-approximation kernel. Training of the neuratworks constructed on the basis of such
kernel will be limited by optimization only outpwtonnections weightsuy (i =0,n). It is

obvious, that it considerably will reduce time alided on training.
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2. Training of neural networks by combined application error
backpropagation and Remez’s algorithm

It is well known that for any continuous functians practically impossible to construct
a polynomial of its best approximatio® (x [2]. Therefore, the decision of approximation

problems usually reduce to the finding of the galeed polynomial

P.() =2 ¢ (X, (4)
i=0
which differs from P’ (x )on infinitesimal. For the finding such approximatdynomial there

are many applied methods. Among these Remez'sitigorin many respects is the most
successful. Having obtained the general recogniiiols everywhere used in practice for the

approximate representation of continuous functlmnpolynomials.

Since all multilayered neural networks with feedfard structure finally induce the
generalized polynomial type of (4) that, obviouslyring network training it is meaningful to
use Remez’s algorithm, which in contrast to tradiéil methods allows to optimize the neural
network up to universal approximator for any contins function on all field of its definition.
Let's consider the principle of this algorithm ihet combination to algorithm “error
backpropagation” on an example of continuous fencéipproximation of one variable by the

non-recurrent neural network with one hidden nedmiayer.

Let f(x)JC[a,b] and on the segmemf,b I¢t's select the system af+ 2 various

points
asx® <x?®<...<x®<x%<b ) (5
by formula
X =a+X(b-a)1-cos™ ), j=0n+1. (6)
2 n+1

Thinking y® = f(x®) let's create the training sékfl),y]@}_:o on the base of system

n+l
J
(5). Then on its basis having applied to a neuealvork the algorithm "error backpropagation”

one can construct the neural network as the bgsbainator of the functionf (x )n the form

of

NO 0O =Y of (&P x-g"). )
where o®,&®,89 are net parametelr:; optimized on the points ofesysts). Taking in
response th#tf (x}l))— N® (x}l)l =const j =0,n+1 let's suppose that

F00 = NP0 =100, 1 (| = EX, [ 00 = maf (9 =N (0] = En’. ®)

as<xs<b
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As is known, sizeE,(f )of the best approximation of the functioh(x on all
segmenta,b Jalways not less the best approximatigff’ of this function on the system (1),

i.e. Ef]l) <E,(f). On the other hand, if it has appeared that neweabork would be the best

function approximator, and this process by thatidde finished. Therefore, let's believe that

EY<E (f)<En. ©)
Further it is necessary replace system of pointbysystem
asx? <x? <...<x®<x? <b (5)
so that following conditions were satisfied:

j+l ' n

signr® (x2 ) = ~signr® (x®); r9(x®)= EY; mja#r,ﬁl) (xfz)l =En . (10)
On the basis of points system (5') let's createining set {xfz), yfz)}r; where
y@ = f(xfz)), and applying algorithm «error backpropagation» r fafunction
r(x)=f(x)-N®(x) one can construct the neural netwark (x or) system (5’). Then we
can assume that
N2 () = NP (9 + 727 (%) £(3) = N (3 = 1,2 () = () = 1,2 (%)
r@ (xj(z)} =Y, rf)(x)H =Ey (8

As well as in the previous case let's assume tE@(f)<E.(qz) (for in case of

E.(f) =EY corresponding outpul® (x Would be the best substitute for functidigx ), 30

E? <E,(f)<En . 9)

Similarly let’s replace system (5%) by system
asxl? <x®<...<x®<x®<b (5”)
so that at allj = 0,1,2,...,n+ ZXollowing conditions are satisfied

. . =0 ,
signr®(x9,) = -signr® (x®); r?(x®)= E@; max|r,” (xj@l =En . (10)

After that it is necessary create the neural nekwiaducing output7z?(x )as the best
approximator of the function® (x) = f(x) - N (x 9n points system (5”) and let's assume
NP () =N2x)+72(3); F9-NP)=r2() -7 (%) =r2(x);

(O (x0)=E?, 1@ =EF @)

etc. while we shall not achieve for arky realization of the conditiorE, () =Ef1k). All this

technology of training of the chosen neural netwoith one hidden layer for approximation
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of continuous functionf (x )an be described by iterative ratio, which esseat®er easily

reveals on the scheme presented in fig. 1.

A4, 7 Meural 9 e
U ITetwaortle

T D)

"Error Backpropagation” 5
Leartang Alsorithin

[Y

Fig. 1 The scheme of the combined training of newgdvork

Thus, for anyx[a,b Jthe optimal signalN®?(x )oeing the best approximator for
corresponding value of functior (x i formed in the output of the adder 6 (fig. 1das
defined by

NA“ (%) = N (%) + 727 (%) (11)
with initial condition N”(x)= 0. The output7z(x )is induced by the three-layer neural
network 2 optimized by algorithm "error backprop@ga' on the basis of the training set
constructed on points of system

a< xIM <x* << xt < xD <, (12)
For each point of the given system should be sadigbllowing three conditions:

: : =)
signr® (X?:l))z —signr® (X§k+l)); (0 (X](k+l))2§§1k); mjalx‘rrfk) (X](k+1)X -EY. (13)

where

—N® =K ® ()] = k)
£00 = N () =199 (x), 99 (x¥) = EV,

9 () = maX f (x) - N® (| = En’ . (14)

a<x<b

In more detail let's consider the scheme of theralenetwork combined training.
Signal r™(x) is formed in the output of the block 3 and aftaditional training through the

comparison block 4 and the training block 5 theraknetwork 2 approximates it on points

n+l

- After checking in the comparison block 8 conditioE® < E_ (f)<En

system {x}kﬂ)}
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through the block 9 replacement of points sys{ex +1)} by system{x('”z)}j: is carried out
so that conditions (13) were satisfied. To sattsfghese conditions, it is enough to replace in
system {x}"ﬂ)}?;l) one point by pointx’ O[a,b Jin which | r?(x") |=E§1k+1) (presence of
such point is caused by known Veyershtrass’s tmeprand all the others to leave not changed

and obtained system to accept as sys{bqf‘ﬁz) }n+1

Process of replacement can be carried out as fslléhthe pointx is between two

points X and x{;" of system{x‘kﬂ)} , then by means of" it is necessary to replace that

from its in which the difference*”(x has the same sign as in the point If the pointx" is
(k+1) |n+1 (k+1) (k+1) [, (k+1) o

at the left of all points from systel{rx }__O and signr, (x ) signr, (xO ) then it is

necessary to replace the poir{™ by; if thus signr,fkﬂ)(x ) —S|gnr(k+1)( f)k*l)), then as

(k+1)
P

1
system{ ‘k+2)}j: it is necessary to select the points systenmx ™, x| x

In case of the poink™ is located at the right of all points of syste{wjk+1)}'7+l it is

j=0’

necessary to act similarly. Notice that in praciices desirable to replace on more points of

system{x"‘*l)} by new points (one of which is') so that thus, first, all conditions (13) were

satisfied and, secondly, that vaqu%*l) (xﬁ'”z))‘ are whenever possible greater.

3. Approximation of continuous functions with using of neural
approximation kernel
Earlier we have established the concept of neyadcximation kernel which under the
characteristics creates "“favourable" approximagorironment for the best approximate of
continuous functions by feedforward neural netwowkigh single nonlinear hidden layer.
Rationality of given approach let's consider onexample of approximation of the function
depending on one variable.

For construction the neural approximation kerné&klehoose a neural network with
one nonlinear hidden layer (Fig. 2), where all otitponnections weights are equal to 1, and
other parameters( (i = ﬁ) — input connections weight#), (i = ﬁ) — thresholds nonlinear

neurons from the hidden layer), are select as aalyrmumbers. As is known, all polynomial

approximation kernels by means of which, as a arde,proved direct approximation theorems
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of the functions theory, at any argument are idafif equal 1. As an example of such kernels

one can to point to the binomial series

Y Crx™m-x* =1, xd[01] (15)
i-0
on the basis of which for continuous function ignfalated Bernstein's approximation

polynomial [4]

B,(X) = icﬁ X" {1 - x)* Df( j (16)

i
n

Fig. 2 Neural Network approximation kernel
Understanding that for any input signal it is pieaity impossible to obtain the signal 1
in the neural network output let’s act as follows.

Start from the points system (5) and constructedtbasis the training se{t(j(l’ ;I}T:
let’s train the given neural network by the schesffered in fig. 1. As a result of training one
can determine such optimum valugs & (i = ﬂ) for which there is an infinitesimat, >0

such as for anx[a,b Will be fulfil the inequality

| nef(x) -1 |<g, (17
where
net, (0 =Y ¢(& x-8) 18)

is the polynomial induced by neural network witlyrsoid activations functions into the
nonlinear neurons from the hidden layer type of

1
¢ (X) = I_e@na (19)

Obtained neural network with parametets g (i = ﬁ) we shall consider as a neural
approximation kernel. On its basis and replacerttenunity weights of output connections by
any real numbersw (i = ﬁ) is possible to construct the neural network capatal

approximate any continuous function offered in hutar kind. Advantage of the given

approach consists that training this network isitoh to training only weights of output
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connections w (i =ﬁ) at presence of in advance optimized other parameateeating

"favourable approximation environment". Reallyisiwisible from following reasoning.

Let continuous functionf(x )and neural approximation kernel (18) is set on the

segmen{a,b ] Then for the neural network type of

> BE x-9), (20

using an inequality (13), limitation of sigmoid fttions from above by 1 and believing

M = Xr&gg]{f (¥)|, we have:

‘f(x)—_iw. Dp(a*&—a’%s

f(x)—if(x)fdé(f{”Dk—ﬂ+

—+

St BlE x-9)-Ya mle Ek_ﬂs

<[ (%) —iqﬁ(ﬁ* D(—a**ih(x)—w,mb(g x-6 <M B’l+i|f(x)—a),|.

Thus, to obtain performance of Veyershtrass’s appration theorem for the neural network

(20) it is enough to optimize weightg (i = O_,n) so thatOx[[a,b it is carried out
Y If()-w| - 0. (21)
i=0

In the conclusion let's note that optimization ofights ) (i =0,n) can be made both

traditional ways (with application "error backprgsion”) and using the scheme of training as
indicated above.
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