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Abstract 
According to the accepted opinion a three-layered neural network with feedforward structure 
is considered as universal approximator for any continuous function. However this is rather 
conventional representation since trained on finite set of points the given neural network will 
be more likely interpolator of continuous function, than its approximator. Therefore, that 
retrain the neural network up to universal approximator so that approximation Vejershtrass’s 
theorem is full carried out it is offered the combined training of neural network by Remez’s 
algorithm with “error backpropagation” and to construct the neural approximation kernel. 
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1. Introduction 

Since 1986 year, after "error backpropagation" algorithm has been offered by 

Rummelhart, various non-recurrent neural-set constructions began to be applied widely in the 

decision of many applied problems such as modelling and identification of systems, generation 

and decomposition of signals, recognition and classification of patterns, etc. Based on the 

differential nature of neural networks this algorithm has allowed to reveal approximate 

properties of the networks using nonlinear activation functions into neurons from hidden 

layers. It has been established [1] that feedforward neural networks even with one hidden 

nonlinear layer are capable to be a universal approximator for any continuous function on the 

set consisting of finite number of points. Moreover, known theorems of Chebishev and Valle-

Pussen [2] have shown that the problem of approximation of continuous function )(xf  on the 

closed limited set Ω  is equivalent to a problem of approximation of the same function on a 

subset Ω⊂Ω0  consisting of finite number of points. 

The problem of approximation of the continuous functions by neural networks was 

considered by many authors. In particular, it is theoretically established that the neural network 
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with one nonlinear hidden layer can approximate any continuous function with necessary 

accuracy [3]. Thus the estimation order of the approximation inversely depends on number of 

neurons used into the hidden layer. In practice to obtain the required estimation of 

approximation it is necessary to involve significant amount nonlinear neurons into the hidden 

layer of neural network, and it, as a rule, leads to increase in time spent for neural network 

training. It does using of neural networks less effective, especially in the solving of 

management problems, where often it is necessary to make operatively the "correct-

reasonable" decision in response to possible external and internal factors of influence. In the 

given article the approach to training the neural networks approximating continuous functions 

is considered somewhat different from traditional. The essence of this approach consists in the 

following. 

For approximation any continuous function )(xf  defined on a segment ],[ ba  instead 

of traditional neural network  
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with any parameters iii θξω ,,  and limited sigmoid activation function ( )iii xx θξϕϕ −⋅=)(  of 

i -th neuron from the hidden layer, it is selected a network of the similar structure  
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where parameters ** , ii θξ  are in advance optimized according to inequality  
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by co-application of error backpropagation and Remez’s algorithm for any training set 

{ } 1

0
1, +
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jjx . The neural network inducing the polynomial ∑
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thus “favourable conditions” for approximation of any continuous function we shall name as 

neural-approximation kernel. Training of the neural networks constructed on the basis of such 

kernel will be limited by optimization only output connections weights ),0( nii =ω . It is 

obvious, that it considerably will reduce time allocated on training. 
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2. Training of neural networks by combined application error 
backpropagation and Remez’s algorithm 

It is well known that for any continuous function it is practically impossible to construct 

a polynomial of its best approximation )(* xPn  [2]. Therefore, the decision of approximation 

problems usually reduce to the finding of the generalized polynomial 
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)()( ϕ ,                                                             (4) 

which differs from )(* xPn  on infinitesimal. For the finding such approximate polynomial there 

are many applied methods. Among these Remez’s algorithm in many respects is the most 

successful. Having obtained the general recognition, it is everywhere used in practice for the 

approximate representation of continuous functions by polynomials. 

Since all multilayered neural networks with feedforward structure finally induce the 

generalized polynomial type of (4) that, obviously, during network training it is meaningful to 

use Remez’s algorithm, which in contrast to traditional methods allows to optimize the neural 

network up to universal approximator for any continuous function on all field of its definition. 

Let's consider the principle of this algorithm in the combination to algorithm "error 

backpropagation" on an example of continuous function approximation of one variable by the 

non-recurrent neural network with one hidden nonlinear layer. 

Let ],[)( baCxf ∈  and on the segment ],[ ba  let’s select the system of 2+n  various 

points 
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by formula 
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Thinking ( ))1()1(
jj xfy =  let’s create the training set { } 1

0

)1()1( ,
+

=

n

jjj yx  on the base of system 

(5). Then on its basis having applied to a neural network the algorithm "error backpropagation" 

one can construct the neural network as the best approximator of the function )(xf  in the form 

of  
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where )1()1()1( ,, iii θξω  are net parameters optimized on the points of system (5). Taking in 

response that ( ) ( ) 1+0,=  ,)1()1()1( njconstxNxf jnj =−  let’s suppose that 
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n

)1()1(
njnn ExxrxNxf ==−  .)()(max)(

)1()1()1(
nn

bxa
n ExNxfxr =−=

≤≤
             (8) 



 630 

As is known, size )( fEn  of the best approximation of the function )(xf  on all 

segment ],[ ba  always not less the best approximation )1(
nE  of this function on the system (1), 

i.e. )()1( fEE nn ≤ . On the other hand, if it has appeared that neural network would be the best 

function approximator, and this process by that would be finished. Therefore, let's believe that 

)1()1( )( nnn EfEE <≤ .                                                              (9) 

Further it is necessary replace system of points (5) by system  
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so that following conditions were satisfied: 
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On the basis of points system (5’) let’s create training set { } 1

0

)2()2( ,
+

=

n

jjj yx , where 

( ))2()2(
jj xfy = , and applying algorithm «error backpropagation» for function 

)()()( )1()1( xNxfxr nn −=  one can construct the neural network )()1( xnπ  on system (5’). Then we 

can assume that 
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As well as in the previous case let’s assume that 
)2(

)( nn EfE <  (for in case of 

)2(
)( nn EfE =  corresponding output )()2( xNn  would be the best substitute for function )(xf ), so 
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Similarly let’s replace system (5’) by system 
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so that at all 1 ..., ,2 ,1 ,0 += nj  following conditions are satisfied 
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After that it is necessary create the neural network inducing output )()2( xnπ  as the best 

approximator of the function )()()( )2()2( xNxfxr nn −=  on points system (5’’) and let’s assume 
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etc. while we shall not achieve for any k  realization of the condition 
)(

)(
k

nn EfE = . All this 

technology of training of the chosen neural network with one hidden layer for approximation 
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of continuous function )(xf  can be described by iterative ratio, which essence rather easily 

reveals on the scheme presented in fig. 1. 

 

Fig. 1 The scheme of the combined training of neural network 
 

Thus, for any ],[ bax∈  the optimal signal )()1( xN k
n

+  being the best approximator for 

corresponding value of function )(xf  is formed in the output of the adder 6 (fig. 1) and is 

defined by 
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with initial condition 0)()0( =xNn . The output )()( xk
nπ  is induced by the three-layer neural 

network 2 optimized by algorithm "error backpropagation" on the basis of the training set 

constructed on points of system 
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For each point of the given system should be satisfied following three conditions: 
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In more detail let’s consider the scheme of the neural network combined training. 

Signal )()( xr k
n  is formed in the output of the block 3 and after traditional training through the 

comparison block 4 and the training block 5 the neural network 2 approximates it on points 

system { } 1

0

)1( +

=
+ n

j

k
jx . After checking in the comparison block 8 conditions 
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nn
k

n EfEE <≤  



 632 

through the block 9 replacement of points system { } 1
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points )1( +k
jx  and )1(

1
+

+
k

jx  of system { } 1

0

)1( +

=
+ n

j

k
jx , then by means of *x  it is necessary to replace that 

from its in which the difference )()1( xr k
n

+  has the same sign as in the point *x . If the point *x  is 

at the left of all points from system { } 1

0

)1( +

=
+ n

j

k
jx  and ( ) ( ))1(

0
1)+(k

n
*1)+(k

n r r += kxsignxsign , then it is 

necessary to replace the point )1(
0

+kx  by; if thus ( ) ( ))1(
0

1)+(k
n

*1)+(k
n r r +−= kxsignxsign , then as 

system { } 1

0

)2( +

=
+ n

j

k
jx  it is necessary to select the points system 1)+(k

n
1)+(k

1
1)+(k

0
* x...,,x,x,x .  

In case of the point *x  is located at the right of all points of system { } 1

0

)1( +

=
+ n

j

k
jx , it is 

necessary to act similarly. Notice that in practice it is desirable to replace on more points of 

system { } 1

0

)1( +

=
+ n

j

k
jx  by new points (one of which is *x ) so that thus, first, all conditions (13) were 

satisfied and, secondly, that values )( )2()1( ++ k
j

k
n xr  are whenever possible greater. 

3. Approximation of continuous functions with using of neural 
approximation kernel 

Earlier we have established the concept of neural approximation kernel which under the 

characteristics creates "favourable" approximation environment for the best approximate of 

continuous functions by feedforward neural networks with single nonlinear hidden layer. 

Rationality of given approach let’s consider on an example of approximation of the function 

depending on one variable.  

For construction the neural approximation kernel let’s choose a neural network with 

one nonlinear hidden layer (Fig. 2), where all output connections weights are equal to 1, and 

other parameters ( )0,=( niiξ  – input connections weights, )0,=( niiθ  – thresholds nonlinear 

neurons from the hidden layer), are select as any real numbers. As is known, all polynomial 

approximation kernels by means of which, as a rule, are proved direct approximation theorems 
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of the functions theory, at any argument are identically equal 1. As an example of such kernels 

one can to point to the binomial series  
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on the basis of which for continuous function is formulated Bernstein's approximation 

polynomial [4] 
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Fig. 2 Neural Network approximation kernel 
 

Understanding that for any input signal it is practically impossible to obtain the signal 1 

in the neural network output let’s act as follows.  

Start from the points system (5) and constructed on its basis the training set { } 1

0

)1( 1,
+

=

n

jjx  

let’s train the given neural network by the scheme offered in fig. 1. As a result of training one 

can determine such optimum values )n0,=(i , **
ii θξ  for which there is an infinitesimal 01 >ε  

such as for any ],[ bax∈  will be fulfil the inequality  
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where  
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is the polynomial induced by neural network with sigmoid activations functions into the 

nonlinear neurons from the hidden layer type of  
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Obtained neural network with parameters )0,=( , ** niii θξ  we shall consider as a neural 

approximation kernel. On its basis and replacement the unity weights of output connections by 

any real numbers )0,=( niiω  is possible to construct the neural network capable to 

approximate any continuous function offered in a tabular kind. Advantage of the given 

approach consists that training this network is limited to training only weights of output 
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connections )0,=( niiω  at presence of in advance optimized other parameters creating 

"favourable approximation environment". Really, it is visible from following reasoning. 

Let continuous function )(xf  and neural approximation kernel (18) is set on the 

segment ],[ ba . Then for the neural network type of 
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using an inequality (13), limitation of sigmoid functions from above by 1 and believing 
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Thus, to obtain performance of Veyershtrass’s approximation theorem for the neural network 

(20) it is enough to optimize weights )0,=( niiω  so that ],[ bax∈∀  it is carried out 

∑
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ixf
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0)( ω .                                                       (21) 

In the conclusion let’s note that optimization of weights )0,=( niiω  can be made both 

traditional ways (with application "error backpropagation") and using the scheme of training as 

indicated above. 
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