FORECASTING STOCK MARKET VOLATILITY: EVIDENCE FROM FOURTEEN COUNTRIES

ERCAN BALABAN

Deniz Yatırım Securities, Istanbul 80496 Turkey Johann Wolfgang Goethe University, Frankfurt/M. 60325 Germany e-mail: ercan.balaban@denizyatirim.com.

ASLI BAYAR

Department of Management Bilkent University, Ankara 06533 Turkey

Tel.: + 90 312 2902046 **Fax:** + 90 312 2664958 **e-mail:** bayar@bilkent.edu.tr

Key Words:

Stock market volatility, forecasting, forecast evaluation

Abstract

This paper evaluates the out-of-sample forecasting accuracy of seven models for weekly volatility in fourteen stock markets. Volatility is defined as within-week standard deviation of continuously compounded daily returns on the stock market index of each country for the period December 1987 to December 1997. Total volatility series include 522 weeks. The first half of the sample (261 weeks) is retained for the estimation of parameters while the second half is for the forecast period. The following models are employed: a random walk model, a historical mean model, moving average models, weighted moving average models, exponentially weighted moving average models, an exponential smoothing model, and a regression model. We first use the standard loss functions to evaluate the performance of the competing models: the mean error, the mean absolute error, the root mean squared error, and the mean absolute percentage error. We also employ the asymmetric loss functions to penalise under/over-prediction.

JEL Classification: C22; C53; G12; G1

I. INTRODUCTION

The financial economic research has no consensus on the relative quality of volatility forecasts in the financial markets. Different studies recommend different forecasting methods. For example, in forecasting volatility of stock exchange markets, Tse (1991), and Tse and Tung (1992) favour exponential weighted moving average model in Japan and Singapore. However, Dimson and Marsh (1990) analysing the U.S. equity market show superiority of simple regression and exponential smoothing models.

Brailsford and Faff (1996) investigate the out-of-sample predictive ability of several models of stock market volatility in Australia. In the measurement of the performance of the models, in addition to symmetric loss functions, they use asymmetric loss functions to penalise under/over prediction. They conclude that the ARCH class of models and a simple regression model provide superior forecast of the volatility. However, the various model ranking are shown to be sensitive to the error statistics used to assess the accuracy of the forecasts.

On the other hand, The evidence with respect to foreign exchange markets is presented by West and Cho (1995), Brooks and Burke (1998), and Balaban (1999). West and Cho (1995) can not show superiority of any forecasting models.

In the finance literature, the existing evidence about the relative quality of volatility forecasts is related to an individual country's stock market: the USA (Akgiray, 1989), the UK (Dimson and Marsh, 1990), Japan (Tse, 1991), Singapore (Tse and Tung, 1992), Australia (Brailsford and Faff, 1996), Switzerland (Adjaoute, Bruand and Gibson-Asner, 1998), Turkey (Balaban, 1998). Moreover, most of the previous researches focus on the forecasting monthly stock market volatility. The present study is primarily based on Brailsford and Faff (1996), and provides an international evidence from fourteen countries with respect to weekly stock market volatility.

The rest of the paper is organised as follows: In the second section, data and methodology are described, in the third section empirical results are presented, and finally in the fourth section the paper is concluded.

II. DATA AND METHODOLOGY

We employ daily observations of stock market indices of fourteen countries for the period December 1987 to December 1997. The data have been obtained from *Datastream*, and the investigated countries (indices) are Belgium (Brussels All Shares Price Index), Canada (Toronto SE 300 Composite Price Index), Denmark (Copenhagen SE General Price Index), Finland (Hex General Price Index), Germany (Faz General Price Index), Hong Kong (Hang Seng Price Index), Italy (Milan Comit General Price Index), Japan (Nikkei 500 Price Index), the Netherlands (CBS All Share General Price Index), the Philippines (Philippines SE Composite Price Index), Singapore (Singapore All Share Price Index), Thailand (Bangkok S.E.T. Price Index), the UK (FTSE All Share Index) and the USA (NYSE Composite Index). The continuously compounded weekly returns are calculated as follows:

$$R_{w,t} = \ln(I_{w,t}/I_{w,t-1}) \tag{1}$$

$$\sigma_{a,w} = \left[\frac{1}{(n-1)} \sum_{t=1}^{n} (R_{w,t} - \mu_w)^2 \right]^{0.5}$$
 (2)

where $I_{w,t}$ and $R_{w,t}$ denote the value of stock market index and continuously compounded return on trading day t in week w, respectively. We define weekly realised volatility as the within-week standard deviation of continuously compounded weekly returns as follows:

$$\mu_{w} = (1/n) \sum_{t=1}^{n} R_{w,t}$$
 (3)

Mean daily index return and within-week standard deviation of daily returns in week w are respectively shown by μ_w and $\sigma_{a,w}$. The number of trading days in a week is given by n. In the data set for each country there are 522 weekly volatility observations. In the analysis, first 261 of the observations from December 1987 to November 1992 are used for estimation, and the second 261 observations from December 1992 to December 1997 are used for forecasting. In the Table 1 summary statistics for within-week standard deviations of returns in whole period, estimation period, and forecast period are presented. The table shows that in four countries, Canada, Finland, Hong Kong and Italy, standard deviations in forecast period are higher than estimation period. In most of the countries, in the forecast period, standard deviations decline.

Table 1. SUMMARY STATISTICS: Within-Week Standard Deviations

		Whole	Period]	Estimati	on Perio	d		Forecas	st Period	
	Mean	Standard Dev.	Skewness	Kurtosis	Mean	Standard Dev.	Skewness	Kurtosis	Mean	Standard Dev.	Skewness	Kurtosis
BEL	0.0051	0.0039	2.6991	13.4987	0.0054	0.0047	2.3840	10.2340	0.0048	0.0029	2.6700	15.9900
CAN	0.0048	0.0030	3.2658	25.1900	0.0048	0.0026	2.2490	12.4650	0.0049	0.0033	3.6600	28.3600
DEN	0.0050	0.0035	3.8511	30.5222	0.0051	0.0037	2.9370	17.2990	0.0048	0.0034	5.0000	49.0000
FIN	0.0084	0.0059	2.6860	18.9146	0.0065	0.0052	2.3570	10.9550	0.0103	0.0060	3.4800	27.0300
GER	0.0086	0.0062	4.9616	45.4618	0.0095	0.0073	5.0010	41.0710	0.0078	0.0047	3.1600	22.0200
HON	0.0118	0.0107	5.2704	45.1534	0.0105	0.0104	6.1310	55.3760	0.0132	0.0109	4.7000	38.9700
ITAL	0.0097	0.0057	2.3184	14.1141	0.0087	0.0059	2.3500	11.2360	0.0107	0.0053	2.6400	20.2300
JAP	0.0089	0.0067	2.4076	11.0324	0.0094	0.0080	2.1890	9.0240	0.0083	0.0052	2.2100	9.9600
NET	0.0071	0.0043	2.4407	12.3680	0.0071	0.0044	2.4080	11.5750	0.0070	0.0043	2.4700	13.1400
PHI	0.0126	0.0076	1.3473	5.3678	0.0142	0.0081	1.1380	4.6120	0.0110	0.0067	1.5900	6.6500
SNG	0.0074	0.0056	3.1548	17.6716	0.0074	0.0062	3.2390	17.8920	0.0073	0.0051	2.8500	14.9000
THA	0.0128	0.0091	2.0638	8.5456	0.0129	0.0103	2.1110	8.2760	0.0127	0.0078	1.7400	6.8700
UK	0.0063	0.0032	2.2687	11.9167	0.0071	0.0036	2.2840	10.5610	0.0055	0.0024	1.6300	9.7100
US	0.0064	0.0039	2.9443	20.3649	0.0073	0.0041	2.4200	13.8160	0.0056	0.0036	4.0100	35.5700

Whole period includes the whole sample (522 weeks).

Estimation period covers the first 216 observations.

Forecast period covers the second 216 weeks.

The following models are employed as forecast competitors:

a) Random walk model:

This model says that the best forecast of this week's volatility is the last week's realised volatility.

$$\sigma_{f,w}(RW) = \sigma_{f,w-1} \tag{4}$$

where w = 262, ..., 522.

b) Historical mean model:

According to this model, the best forecast of this week is average of all past observations available.

$$\sigma_{f,w}(HM) = \frac{1}{w-1} \sum_{j=1}^{w-1} \sigma_{a,j}$$
 (5)

where w = 262, ..., 522.

c) Moving average (MA-α) model:

This model says that the best forecast of this week's volatility is equally weighted average of realised volatilities in the last α weeks.

$$\sigma_{f,w}(MA(\alpha)) = \frac{1}{\alpha} \sum_{i=1}^{\alpha} \sigma_{a,w-i}$$
 (6)

where w = 262, ..., 522, and $\alpha = 4$, 6, 12, 24, 36, 52. The (arbitrarily) chosen values of α represent different horizons from the very short to the long terms.

d) Weighted moving average (WMA-α) model:

In the WMA- α model, weight of each observation is not equal like in MA- α model (Liljeblom and Stenius (1997))

$$\sigma_{f,w}(WMA(\alpha)) = \sum_{i=1}^{\alpha} \lambda_i \sigma_{a,w-i}$$
(7)

where w = 262, ..., 522, and $\alpha = 4, 6, 12, 24, 36, 52$.

In the equation (7), the weight of each observation, λ_i , declines by 10%, giving the highest (lowest) weight to the newest (oldest) information.

e) Exponentially smoothing (ES) model:

In the ES model, the forecast of volatility is a function of the immediate past forecast and the immediate past observed volatility (Dimson and Marsh (1990); Brailsford and Faff (1996)).

$$\sigma_{f,w}(ES) = \theta \sigma_{f,w-1}(ES) + (1 - \theta) \sigma_{a,w-1}$$
(8)

where w = 262, ..., 522.

The smoothing parameter (θ) is restricted to lie between zero and one. Following the previous research, we determine the optimal value of θ empirically. To this end, we start an initial value of θ , zero in our case, and increase it by 0.01 each time until we obtain unity for q ((Brailsford and Faff (1996)).

f) Exponentially weighted moving average (EWMA-α) model:

In this model, the past observed volatility is replaced by the α -week moving average forecast; ie., the forecast of the MA- α model (Tse, 1991; Tse and Tung, 1992; and Brailsford and Faff, 1996).

$$\sigma_{f,w}(EWMA - \alpha) = \lambda \sigma_{f,w-1}(EWM - \alpha) + (1 - \lambda)\sigma_{a,w}(MA - \alpha)$$
(9)

where w = 262, ..., 522, and $\alpha = 4$, 6, 12, 24, 36, 52. Similar to the MA- α models, the (arbitrarily) chosen values represent different horizons from the very short to the long terms.

g) Regression (REG) model:

We first run the regression below for the sample where w is between one and 261.

$$\sigma_{aw} = c + \beta \sigma_{aw-1} + u_{w-1} \tag{10}$$

Then we construct the forecast for the first week of the forecast period (w = 262) using the estimated regression parameters:

$$\sigma_{f,w}(REG) = c + \beta \sigma_{a,w-1} \tag{11}$$

We update the regression equation weekly; ie., each week we drop the oldest observation and add the last or newest observation. Thus we use the same number of observations in each case. Hence for each country the total estimation procedure requires estimation of 261 regressions to obtain out-of-sample forecasts of weekly volatility. Note that this procedure lets us depend on the time-varying parameters for each forecast.

III. FORECAST EVALUATION AND EMPIRICAL RESULTS

We compare the forecast performance of each model through both symmetric and asymmetric error statistics.

a) Symmetric Error Statistics

Four commonly used loss functions or error statistics: the mean error (ME), the mean absolute error (MAE), the root mean squared error (RMSE), and the mean absolute percentage error (MAPE) are employed to measure the performance of the forecasting models.

$$ME = \frac{1}{261} \sum_{m=262}^{522} \left(\sigma_{f,w} - \sigma_{a,w} \right)$$
 (12)

$$MAE = \frac{1}{261} \sum_{m=262}^{522} \left| \sigma_{f,w} - \sigma_{a,w} \right|$$
 (13)

$$RMSE = \left[\frac{1}{261} \sum_{m=262}^{522} (\sigma_{f,w} - \sigma_{a,w})^2\right]^{0.5}$$
 (14)

$$MAPE = \frac{1}{261} \sum_{m=262}^{522} \left| \frac{\sigma_{f,w} - \sigma_{a,w}}{\sigma_{a,w}} \right|$$
 (15)

 $\sigma_{f,w}$ and $\sigma_{a,w}$ denote the volatility forecast and the realised volatility in week w, respectively.

Table 2, Table 3, Table 4, and Table 5 provide results of forecast error statistics for each model according to symmetric error measures, (ME, MAE, RMSE, and MAPE respectively).

Table 2 illustrates that according to ME criteria, EWMA and ES model under-predict the volatility in all of the stock markets. Moreover, except for HM and REG, all models under-predict the volatility in most of the stock markets.

Table 2:

	RW	HM	MA-12	WMA-12	EWMA-12	ES	REG
BEL	-0.009	0.241	-0.120	-0.101	-0.236	-0.240	0.152
CAN	-0.034	-0.228	-0.160	-0.132	-0.211	-0.210	-0.219
DEN	0.025	0.243	-0.006	-0.044	-0.096	-0.010	0.230
FIN	0.044	-2.700	-0.005	-0.032	-0.131	-0.130	-1.776
GER	-0.041	1.023	-0.210	-0.177	-0.321	-0.320	0.785
HON	-0.032	-1.814	-0.600	-0.479	-0.020	-0.002	-1.192
ITAL	0.014	-1.257	0.001	0.012	-0.246	-0.250	-0.905
JAP	-0.089	0.671	-0.270	-0.238	-0.274	-0.270	0.257
NET	-0.042	-0.326	-0.270	-0.222	-0.309	-0.310	-0.215
PHI	-0.028	2.142	-0.310	-0.249	-0.347	-0.350	1.419
SNG	-0.044	-0.064	-0.230	-0.182	-0.277	-0.280	-0.043
THA	-0.017	-0.188	-0.130	-0.095	-0.301	-0.300	-0.105
UK	-0.006	1.137	-0.005	-0.048	-0.133	-0.130	0.791
US	-0.019	0.945	-0.200	-0.165	-0.310	-0.310	0.675

Results of MAE in Table 3 indicate that in ranking, HW gives the second worst results in the forecasting, after RW model. However, ES model gives the most accurate forecasts. In 12 countries, ES model is the best model. In the other countries, Canada and Hong Kong, REG and WMA-12 are the best models respectively. In general ranking, WMA-12 provides the second best forecast. MA-12, EWMA-12 and REG models rank third, fourth and fifth respectively.

As shown in Table 4, according to RMSE criteria, ES model is the best performing model. On the other hand, RW model provides the worst forecasts in 12 countries. For the other countries, Hong Kong and the Netherlands, HM is the worst model. In ranking, WMA-12 and MA-12 are again the second and the third best models respectively.

Finally, Table 5 shows the results according to MAPE criteria, like under previous criterias, ES model gives relatively more accurate results than the other models. However, according to MAPE, even though in general HM is the second least performing model, it gives the best results in two countries, Finland and Italy.

In summary, ES model is consistently the best performing model according to MAE, RMSE, and MAPE. On the other hand, HM is the least performing model when MAE, and RMSE are used, and it is the second least performing one when MAPE is used.

In all of the countries, except in Finland, Italy, the Netherlands, Singapore, and the US, symmetric error statistics provide quite consistent results for the performance of the models.

Table 3:

		RW	HM	MA-12	WMA-12	EWMA-12	ES	REG
	Actual	2.363	2.076	1.854	1.837	1.860	1.809	1.946
BEL	Relative	1.000	0.879	0.785	0.778	0.787	0.765	0.824
	Rank	7	6	3	2	4	1	5
	Actual	2.477	2.070	2.069	2.023	2.043	1.954	1.950
CAN	Relative	1.000	0.836	0.835	0.817	0.825	0.789	0.787
	Rank	7	6	5	3	4	2	1
	Actual	2.477	2.126	2.019	1.991	2.030	1.949	2.016
DEN	Relative	1.000	0.858	0.815	0.804	0.820	0.787	0.814
	Rank	7	6	4	2	5	1	3
	Actual	5.234	4.146	3.879	3.891	3.886	3.808	3.884
FIN	Relative	1.000	0.792	0.741	0.743	0.742	0.727	0.742
	Rank	7	6	2	5	4	1	3
	Actual	3.463	3.512	2.768	2.714	2.735	2.618	3.132
GER	Relative	0.986	1.000	0.788	0.773	0.779	0.745	0.892
	Rank	6	7	4	2	3	1	5
	Actual	6.406	6.119	5.286	5.232	5.351	5.614	5.518
HON	Relative	1.000	0.955	0.825	0.817	0.835	0.876	0.861
	Rank	7	6	2	1	3	5	4
	Actual	4.815	3.741	3.686	3.749	3.624	3.602	3.724
ITA	Relative	1.000	0.777	0.765	0.779	0.753	0.748	0.774
	Rank	7	5	3	6	2	1	4
	Actual	4.055	3.811	3.424	3.335	3.455	3.259	3.405
JAP	Relative	1.000	0.940	0.844	0.823	0.852	0.804	0.840
	Rank	7	6	4	2	5	1	3
	Actual	2.691	2.901	2.439	2.382	2.378	2.327	2.408
NET	Relative	0.927	1.000	0.841	0.821	0.820	0.802	0.830
	Rank	6	7	5	3	2	1	4
	Actual	5.292	5.775	4.433	4.344	4.454	4.300	4.943
PHI	Relative	0.916	1.000	0.768	0.752	0.771	0.745	0.856
	Rank	6	7	3	2	4	1	5
	Actual	3.844	3.314	3.160	3.136	3.185	3.125	3.144
SNG	Relative	1.000	0.862	0.822	0.816	0.829	0.813	0.818
	Rank	7	6	4	2	5	1	3
	Actual	6.123	5.738	5.246	5.176	5.298	5.054	5.365
THA	Relative	1.000	0.937	0.857	0.845	0.865	0.825	0.876
	Rank	7	6	3	2	4	1	5
	Actual	2.114	2.207	1.728	1.687	1.742	1.659	1.932
UK	Relative	0.958	1.000	0.783	0.764	0.789	0.752	0.875
	Rank	6	7	3	2	4	1	5
	Actual	2.604	2.776	2.025	1.989	2.017	1.942	1.983
US	Relative	0.938	1.000	0.730	0.717	0.726	0.699	0.714
	Rank	6	7	5	3	4	1	2

Table 4. RMSE

		RW	HM	MA-12	WMA-12	EWMA-12	ES	REG
	Actual	3.334	2.958	2.659	2.658	2.688	2.647	2.762
BEL	Relative	1.000	0.887	0.798	0.797	0.806	0.794	0.828
	Rank	7	6	3	2	4	1	5
	Actual	3.892	3.267	3.235	3.187	3.220	3.130	3.140
CAN	Relative	1.000	0.839	0.831	0.819	0.827	0.804	0.807
	Rank	7	6	5	3	4	1	2
	Actual	3.899	3.379	3.256	3.239	3.278	3.211	3.230
DEN	Relative	1.000	0.867	0.835	0.831	0.841	0.824	0.828
	Rank	7	6	4	3	5	1	2
	Actual	7.43	6.556	5.892	5.879	5.902	5.835	6.117
FIN	Relative	1.000	0.882	0.793	0.791	0.794	0.785	0.823
	Rank	7	6	3	2	4	1	5
	Actual	5.101	4.836	4.242	4.198	4.272	4.154	4.462
GER	Relative	1.000	0.948	0.832	0.823	0.837	0.814	0.875
	Rank	7	6	3	2	4	1	5
	Actual	10.797	11.018	9.697	9.591	9.719	9.664	9.708
HON	Relative	0.980	1.000	0.880	0.870	0.882	0.877	0.881
	Rank	6	7	3	1	5	2	4
	Actual	6.750	5.476	5.153	5.166	5.176	5.109	5.329
ITA	Relative	1.000	0.811	0.763	0.765	0.767	0.757	0.789
	Rank	7	6	2	3	4	1	5
	Actual	5.634	5.222	4.874	4.763	4.915	4.686	4.818
JAP	Relative	1.000	0.927	0.865	0.845	0.872	0.832	0.855
	Rank	7	6	4	2	5	1	3
	Actual	3.776	4.324	3.452	3.387	3.472	3.329	3.520
NET	Relative	0.873	1.000	0.798	0.783	0.803	0.770	0.814
	Rank	6	7	3	2	4	1	5
	Actual	7.198	7.083	6.082	6.001	6.129	6.007	6.282
PHI	Relative	1.000	0.984	0.845	0.834	0.851	0.835	0.873
	Rank	7	6	3	1	4	2	5
	Actual	5.611	5.068	4.730	4.734	4.819	4.756	4.720
SNG	Relative	1.000	0.903	0.843	0.844	0.859	0.848	0.841
	Rank	7	6	2	3	5	4	1
	Actual	8.447	7.843	7.251	7.134	7.333	7.065	7.164
THA	Relative	1.000	0.928	0.858	0.845	0.868	0.836	0.848
	Rank	7	6	4	2	5	1	3
	Actual	2.752	2.720	2.320	2.278	2.329	2.251	2.435
UK	Relative	1.000	0.988	0.843	0.828	0.846	0.818	0.885
	Rank	7	6	3	2	4	1	5
	Actual	3.940	3.774	3.211	3.192	3.203	3.168	2.513
US	Relative	1.000	0.958	0.815	0.810	0.813	0.804	0.638
	Rank	7	6	5	3	4	2	1

The root mean squared error, (RMSE), actual figures must be multiplied by 10^{-2} .

Table 5. MAPE

		RW	HM	MA-12	WMA-12	EWMA-12	ES	REG
	Actual	0.561	0.593	0.476	0.474	0.470	0.459	0.538
BEL	Relative	0.945	1.000	0.802	0.798	0.792	0.774	0.907
	Rank	6	7	4	3	2	1	5
	Actual	0.577	0.528	0.522	0.515	0.499	0.489	0.495
CAN	Relative	1.000	0.915	0.904	0.893	0.866	0.849	0.858
	Rank	7	6	5	4	3	1	2
	Actual	0.625	0.651	0.543	0.535	0.547	0.530	0.616
DEN	Relative	0.960	1.000	0.834	0.822	0.841	0.814	0.947
	Rank	6	7	3	2	4	1	5
	Actual	0.691	0.422	0.553	0.553	0.553	0.535	0.461
FIN	Relative	1.000	0.610	0.800	0.800	0.800	0.775	0.668
	Rank	7	1	5	6	4	3	2
	Actual	0.569	0.667	0.471	0.465	0.455	0.443	0.600
GER	Relative	0.852	1.000	0.707	0.697	0.682	0.664	0.899
	Rank	5	7	4	3	2	1	6
	Actual	0.549	0.524	0.474	0.468	0.482	0.491	0.484
HON	Relative	1.000	0.955	0.864	0.853	0.878	0.895	0.882
	Rank	7	6	2	1	3	5	4
	Actual	0.557	0.427	0.442	0.447	0.438	0.431	0.431
ITA	Relative	1.000	0.766	0.792	0.802	0.786	0.774	0.773
	Rank	7	1	5	6	4	3	2
	Actual	0.609	0.662	0.507	0.501	0.511	0.491	0.563
JAP	Relative	0.921	1.000	0.766	0.757	0.772	0.742	0.851
	Rank	6	7	3	2	4	1	5
	Actual	0.460	0.519	0.406	0.400	0.385	0.387	0.442
NET	Relative	0.886	1.000	0.782	0.770	0.742	0.745	0.850
	Rank	6	7	4	3	1	2	5
	Actual	0.573	0.839	0.510	0.503	0.504	0.490	0.681
PHI	Relative	0.683	1.000	0.608	0.599	0.601	0.584	0.812
	Rank	5	7	4	2	3	1	6
	Actual	0.608	0.586	0.533	0.529	0.532	0.522	0.551
SNG	Relative	1.000	0.964	0.877	0.871	0.875	0.859	0.906
	Rank	7	6	4	2	3	1	5
	Actual	0.596	0.589	0.521	0.516	0.525	0.498	0.548
THA	Relative	1.000	0.989	0.874	0.866	0.881	0.836	0.919
	Rank	7	6	3	2	4	1	5
	Actual	0.462	0.576	0.383	0.377	0.381	0.368	0.495
UK	Relative	0.801	1.000	0.664	0.653	0.661	0.639	0.859
	Rank	5	7	4	2	3	1	6
	Actual	0.548	0.726	0.448	0.437	0.432	0.415	0.702
US	Relative	0.756	1.000	0.617	0.603	0.595	0.571	0.967
	Rank	5	7	4	3	2	1	6

The mean absolute percentage error, (MAPE), actual figures must be multiplied by 10⁻².

b) Asymmetric Error Statistics

These conventional error statistics used in the previous subsection, ME, MAE, RMSE, and MAPE, are symmetric; ie., they give an equal weight to under-and-over-predictions of volatility of similar magnitude. However, many investors do not give equal importance to under and over prediction of volatility, Especially, in the pricing of the options, while underprediction of volatility is undesirable for a seller, overprediction of it is undesirable for a buyer. Following Pagan and Schwert (1990) and Brailsford and Faff (1996), to penalise under(over)-predictions more heavily, the following mean mixed error statistics are constructed:

$$MME(U) = \frac{1}{261} \left[\sum_{t=1}^{O} \left| \sigma_{f,w} - \sigma_{a,w} \right| + \sum_{t=1}^{U} \sqrt{\left| \sigma_{f,w} - \sigma_{a,w} \right|} \right]$$
 (16)

$$MME(O) = \frac{1}{261} \left[\sum_{t=1}^{O} \sqrt{|\sigma_{f,w} - \sigma_{a,w}|} + \sum_{t=1}^{U} |\sigma_{f,w} - \sigma_{a,w}| \right]$$
(17)

where O is the number of over-predictions, and U is the number of under-predictions. MME(U) and MME(O) penalise the under-predictions and over-predictions more heavily, respectively.

It is expected that for an "unbiased" forecast model under and overprediction number should be equal to 50% of the time, ie. 50% of the time it underpredicts, and 50% of the time it overpredicts.

Results in Table 6 show that, except for RW, HM, and REG models, all of the models overpredict the volatility in all of the stock markets. However, among RW, HM, and REG, even though HM and REG overpredicts the volatility in 12 countries, RW over predicts the volatility only in 6 countries, ie. RW underpredicts in most of the countries. These results proved by MME conflict with the results provided by ME. The reason for the difference in the results can be explained as MME takes into account only the number of under and overpredictions, however for ME magnitude of the error is important. Thus for the difference it can be said that the models overpredict the volatility most of the time, but their forecast error are small.

If underprediction of the model is undesirable, HW is the best, and REG is the worst model. However, when the results for US is evaluated, it is observed that REG is an extreamly bad model for forecasting volatility of US market. If we drop the results for the US, and re-rank the models, REG is the best model, RW is the worst model, and HM is the third best model after WMA-12.

On the other hand, if overprediction is undesirable in the forecasting, ES model performs the best, and RW performs the worst. However, in this case, when we do not take into account the results for US, ranking does not change much, ranking of REG declines just from seven to six, and ES model is still the best model. According to MME(O), WMA-12 provides the third best performance after EWMA-12.

Table 6a. MMEU and MMEO

			RW	HM	MA-12	WMA-12	EWMA-12	ES	REG
		Actual	2.269	1.682	1.949	1.922	2.024	2.003	1.705
	MME(U)	Relative	1.000	0.741	0.859	0.847	0.892	0.883	0.752
		Rank	7	1	4	3	6	5	2
BEL		Actual	2.347	2.674	2.104	2.099	2.064	1.983	2.508
DEL	MME(O)	Relative	0.878	1.000	0.787	0.785	0.772	0.741	0.938
		Rank	5	7	4	3	2	1	6
	%	Underestimaton	48.3	36.8	45.6	44.4	45.6	47.9	37.2
	%	Overestimation	51.7	63.2	54.4	55.6	54.4	52.1	62.8
		Actual	2.308	1.958	1.953	1.915	2.029	1.935	1.919
	MME(U)	Relative	1.000	0.848	0.846	0.830	0.879	0.838	0.832
		Rank	7	5	4	1	6	3	2
CAN		Actual	2.308	2.318	2.357	2.321	2.251	2.209	2.211
CAIN	MME(O)	Relative	0.979	0.984	1.000	0.985	0.955	0.937	0.938
		Rank	4	5	7	6	3	1	2
	%	Underestimaton	50.6	40.2	40.2	40.6	42.1	41.8	42.1
	%	Overestimation	49.4	59.8	59.8	59.4	57.9	58.2	57.9
		Actual	2.280	1.632	1.893	1.874	1.920	1.869	1.592
	MME(U)	Relative	1.000	0.716	0.830	0.822	0.842	0.820	0.698
		Rank	7	2	5	4	6	3	1
DEN	MME(O)	Actual	2.374	2.740	2.320	2.286	2.302	2.222	2.643
DEN		Relative	0.867	1.000	0.847	0.834	0.840	0.811	0.965
		Rank	5	7	4	2	3	1	6
	%	Underestimaton	48.3	33.3	41.8	42.9	40.6	42.1	33.7
	%	Overestimation	51.7	66.7	58.2	57.1	59.4	57.9	66.3
		Actual	3.453	4.291	2.724	2.693	2.783	2.676	3.695
	MME(U)	Relative	0.805	1.000	0.635	0.628	0.649	0.624	0.861
		Rank	5	7	3	2	4	1	6
FIN	MME(O)	Actual	3.639	1.817	3.272	3.323	3.214	3.229	2.261
FIIN		Relative	1.000	0.499	0.899	0.913	0.883	0.887	0.621
		Rank	7	1	5	6	3	4	2
	%	Underestimaton	48.7	65.1	42.9	41.0	43.7	41.0	57.9
	%	Overestimation	51.3	34.9	57.1	59.0	56.3	59.0	42.1
		Actual	2.776	1.845	2.349	2.313	2.403	2.345	1.796
	MME(U)	Relative	1.000	0.665	0.846	0.833	0.866	0.845	0.647
		Rank	7	2	5	3	6	4	1
GER		Actual	2.806	4.004	2.585	2.560	2.482	2.406	3.626
GEK	MME(O)	Relative	0.701	1.000	0.646	0.639	0.620	0.601	0.906
		Rank	5	7	4	3	2	1	6
	%	Underestimaton	49	27.2	45.2	45.2	44.8	46.4	29.5
	%	Overestimation	51	72.8	54.8	54.8	55.2	53.6	70.5
		Actual	3.792	3.769	3.192	3.132	3.241	3.303	3.446
	MME(U)	Relative	1.000	0.994	0.842	0.826	0.855	0.871	0.909
		Rank	7	6	2	1	3	4	5
HON		Actual	3.735	3.701	3.643	3.637	3.676	3.784	3.615
11011	MME(O)	Relative	0.987	0.978	0.963	0.961	0.972	1.000	0.955
		Rank	6	5	3	2	4	7	1
	%	Underestimaton	48.7	43.7	43.3	42.9	43.7	44.4	42.5
	%	Overestimation	51.3	56.3	56.7	57.1	56.3	55.6	57.5

Table 6b. MMEU and MMEO

			RW	HM	MA-12	WMA-12	EWMA-12	ES	REG
		Actual	3.443	3.467	2.746	2.809	2.746	2.813	3.291
	MME(U)	Relative	0.993	1.000	0.792	0.810	0.792	0.811	0.949
		Rank	6	7	1	3	2	4	5
TTLA		Actual	3.358	2.419	3.154	3.190	3.082	3.020	2.600
ITA	MME(O)	Relative	1.000	0.720	0.939	0.950	0.918	0.899	0.774
		Rank	7	1	5	6	4	3	2
	%	Underestimaton	51.3	56.3	44.8	45.6	44.8	45.2	53.6
	%	Overestimation	48.7	43.7	55.2	54.4	55.2	54.8	46.4
		Actual	3.151	2.139	2.588	2.554	2.626	2.618	2.324
	MME(U)	Relative	1.000	0.679	0.821	0.811	0.834	0.831	0.737
		Rank	7	1	4	3	6	5	2
TAD		Actual	2.982	3.890	3.024	2.960	3.009	2.808	3.254
JAP	MME(O)	Relative	0.767	1.000	0.777	0.761	0.773	0.722	0.836
		Rank	3	7	5	2	4	1	6
	%	Underestimaton	51.7	30.7	41.4	42.1	41.8	45.6	38.7
	%	Overestimation	48.3	69.3	58.6	57.9	58.2	54.4	61.3
		Actual	2.446	2.383	2.357	2.288	2.431	2.342	2.191
	MME(U)	Relative	1.000	0.974	0.963	0.935	0.994	0.957	0.896
		Rank	7	5	4	2	6	3	1
NIDE		Actual	2.458	2.745	2.364	2.364	2.179	2.254	2.482
NET	MME(O)	Relative	0.896	1.000	0.861	0.861	0.794	0.821	0.904
		Rank	5	7	4	3	1	2	6
	%	Underestimaton	48.7	41.8	48.3	46.7	47.9	48.7	43.3
	%	Overestimation	51.3	58.2	51.7	53.3	52.1	51.3	56.7
		Actual	3.560	2.412	3.059	2.999	3.093	3.030	2.363
	MME(U)	Relative	1.000	0.677	0.859	0.842	0.869	0.851	0.664
	(-)	Rank	7	2	5	3	6	4	1
DIII	MME(O)	Actual	3.525	5.280	3.399	3.375	3.372	3.285	4.648
PHI		Relative	0.668	1.000	0.644	0.639	0.639	0.622	0.880
		Rank	5	7	4	3	2	1	6
	%	Underestimaton	50.6	28.7	43.3	42.9	43.7	44.1	29.9
	%	Overestimation	49.4	71.3	56.7	57.1	56.3	55.9	70.1
		Actual	2.977	2.298	2.488	2.426	2.527	2.477	2.296
	MME(U)	Relative	1.000	0.772	0.836	0.815	0.849	0.832	0.771
		Rank	7	2	5	3	6	4	1
SNG		Actual	2.921	3.203	2.847	2.874	2.814	2.821	3.054
SNG	MME(O)	Relative	0.912	1.000	0.889	0.897	0.879	0.881	0.954
		Rank	5	7	3	4	1	2	6
	%	Underestimaton	51.3	36.4	42.9	41.8	44.4	42.5	39.8
	%	Overestimation	48.7	63.6	57.1	58.2	55.6	57.5	60.2
		Actual	3.862	3.222	3.231	3.187	3.279	3.226	3.252
	MME(U)	Relative	1.000	0.834	0.837	0.825	0.849	0.835	0.842
		Rank	7	2	4	1	6	3	5
TILA		Actual	3.741	4.268	3.824	3.828	3.808	3.675	4.004
THA	MME(O)	Relative	0.876	1.000	0.896	0.897	0.892	0.861	0.938
		Rank	2	7	4	5	3	1	6
	%	Underestimaton	51	37.2	43.3	41	43.7	42.5	41
	%	Overestimation	49	62.8	56.7	59	56.3	57.5	59

Table 6c. MMEU and MMEO

			RW	HM	MA-12	WMA-12	EWMA-12	ES	REG
		Actual	2.260	1.210	1.868	1.840	1.912	1.904	1.316
	MME(U)	Relative	1.000	0.535	0.826	0.814	0.846	0.843	0.583
		Rank	7	1	4	3	6	5	2
UK		Actual	2.177	3.387	2.088	2.040	2.083	1.956	2.967
UK	MME(O)	Relative	0.643	1.000	0.616	0.602	0.615	0.577	0.876
		Rank	5	7	4	2	3	1	6
	%	Underestimaton	52.9	26.1	44.8	44.8	44.4	47.1	31.0
	%	Overestimation	47.1	73.9	55.2	55.2	55.6	52.9	69.0
		Actual	2.407	1.601	2.048	1.981	2.086	2.069	176.576
	MME(U)	Relative	0.014	0.009	0.012	0.011	0.012	0.012	1.000
		Rank	6	1	3	2	5	4	7
US		Actual	2.406	3.585	2.163	2.170	2.119	2.015	11.222
US	MME(O)	Relative	0.214	0.319	0.193	0.193	0.189	0.180	1.000
		Rank	5	6	3	4	2	1	7
	%	Underestimaton	50.2	28.7	46.4	44.1	46.4	46.7	34.5
	%	Overestimation	49.8	71.3	53.6	55.9	53.6	53.3	65.5

MME(U) and MME(O) are the mean mixed error statistics that penalise the underpredictions and overpredictions more heavily, respectively. *Actual* is the calculated error statistics. MME(U) and MME(O) actual figures must be multiplied by 10^{-2} . *Relative* is the ratio between the actual error statistic of a model and that of the worst performing model. The best performing model has a rank 1.

IV. CONCLUSION

The present paper employs seven different models, a random walk model, a historical mean model, moving average models, weighted moving average models, exponentially weighted moving average models, an exponential smoothing model, and a regression model, to forecast out-of-sample within-week standard deviations in fourteen countries.

In the evaluation of the performances of the models, both symmetric and asymmetric statistics are used. The results show that symmetric statistics, the mean absolute error, the root mean squared error, and the mean absolute percentage error, consistently favour ES model. However, symmetric statistics show that HM and RW models perform poorly.

On the other hand, even though according to asymmetric statistics RW is consistently the worst model, asymmetric statistics do not prove consistent results for the best performing model

REFERENCES

- [1] Adjaoute, K., M. Bruand, and R. Gibson-Asner (1998) On The Predictability of The Stock Market Volatility: Does History Matter? European Financial Management, 4, 293-319.
- [2] Akgiray, V. (1989) Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts, Journal of Business, 62, 55-80.
- [3] Alexander, C. (1996) Volatility and Correlation Forecasting, in C. Alexander (ed.) The Handbook of Risk Management and Analysis, John Wiley & Sons, 233-260.

- [4] Andersen, T. G. and Bollerslev, T. (1997) "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts", NBER Working Paper Series, 6023, April.
- [5] Balaban, E. (1998) Forecasting Stock Market Volatility, Ph.D. Dissertation in Progress, Johann Wofgang Goethe University, Frankfurt/M., Germany.
- [6] Balaban, E. (1999) Comparative Forecasting Performance of Conditional Volatility Models of Exchange Rates, Unpublished Manuscript, Deutsche Bundesbank, Frankfurt/M., Germany.
- [7] Black, F. (1976) Studies of Stock Price Volatility Changes, Proceedings of the 1976 Meetings of the American Statistics Association, Business and Economics Statistics Section, 177-81.
- [8] Brailsford, T. J. and R. W. Faff (1996) An Evaluation of Volatility Forecasting Techniques, Journal of Banking and Finance, 20, 419-438.
- [9] Brooks, C., Burke, S. P., 1998. Forecasting exchange rate volatility using conditional variance models selected by information criteria, Economics Letters 61, 273-278.
- [10] Diebold, F. X. and J. A. Lopez (1996) Forecast Evaluation and Combination, in G. S. Maddala and C.
- [11] R. Rao (eds.) Handbook of Statistics, Volume 14: Statistical Methods in Finance. North-Holland, Amsterdam.
- [12] Dimson, E. and P. Marsh (1990) Volatility Forecasting Without Data-Snooping, Journal of Banking and Finance, 14, 399-421.
- [13] Figlewski, S. (1997) Forecasting Volatility, Financial Markets, Institutions & Instruments, 6, Number 1.
- [14] French, K. R., G. W. Schwert and R. Stambaugh (1987) Expected Stock Returns and Volatility, Journal of Financial Economics, 19, 3-29.
- [15] Taylor, S. J. 1987 Forecasting the Volatility of Currency Exchange Rates, Internatioal Journal of Forecasting, 3, 159-170.
- [16] Tse, Y. K. (1991) Stock Returns Volatility in the Tokyo Stock Exchange, Japan and the World Economy, 3, 285-298.
- [17] Tse, S. H. and K. S. Tung (1992) Forecasting Volatility in the Singapore Stock Market, Asia Pacific Journal of Management, 9, 1-13.
- [18] West, K. D., Cho, D., 1995. The predictive ability of several models of exchange rate volatility, Journal of Econometrics 69, 367-391.